A röntgensugárzás, mint analitikai reagens

- Felfedezése (1895, W. C. Röntgen, katódsugárcső, ZnS-os ernyő, X-[ismeretlen]-sugárzás, <u>X-ray</u>, Röntgen-Strahlung)
- <u>Elektromágneses</u>, nagy energiájú és nagy áthatoló képességű sugárzás
- Energiája: E=hv=hc/λ
 <u>ekvivalens elektronenergia</u>: E=e⁻U_{gy} (<u>keV</u>)
 (0,1 1000 keV)
- <u>Hullámhossza</u> és mértékegysége: 0,01-100 Å; 1 Å = 0,1 nm $\lambda(Angström) = \frac{hc}{E} = \frac{hc}{e^{-}U_{gy}} = \frac{hc}{e^{-}}\frac{1}{U_{gy}} = 12,393\frac{1}{U_{gy}(kV)}$
- Csoportosítása: folytonos, vonalas, ezek összeadódása, monokromatikus sugárzás

Röntgensugárzás keltése, ill. keletkezése

• <u>Alapelvei:</u>

- 1.) igen nagy sebességre gyorsított töltött részecskék (pl. elektronok) mozgásállapotának megváltoztatásával (<u>lassításával, körpályára kényszerítésével</u>). A klasszikus fizika (Maxwell) szerint EMH-t sugároz.
- 2.) ugyancsak igen nagy sebességre gyorsított bombázó részecskékkel előidézett belső ionizációt követő stabilizálódás során előálló karakterisztikus sugárzásként.

Megvalósításai:

- 1a) <u>Szinkrotronban</u> körpályán tartva (<u>Syncrotron Radiation</u>) :
 - Koharens, diszkrét monokromatikus sugárzás vagy
 - Folytonos, ill. különböző tartományokban generálható
 - Nagy és változtatható intenzitású sugárzás
- 1b) <u>Röntgencsőben</u> (hagyományos katódsugárcsőben)
 Egytenes fékezési sugárzás (Bromsstrahlung)
 - Folytonos fékezési sugárzás (Bremsstrahlung)
- 2) Hagyományosan <u>röntgencsőben</u> (katódsugárcsőben)

A röntgencső felépítése

Anód (tiszta fém) szerint; U_{gy} = 5-100 kV

A röntgencsövek spektruma

- Mo-anódú cső; $U_{gy} = 5-25$, 35 kV
- λ_{min}(Å)=12,393/U_{gy}(kV)
- $Int_{folyt,max} \sim U_{gy}^2 I_{cső} Z_{anód}$

<u>Kβ-szűrők:</u> monokromatikus Kα előállítására

 Olyan szűrő elemmel, mely abszorpciós éle a kiszűrendő Kβ és a megtartandó $K\alpha$ közé esik.

Kristály-, kristályos, kristályrács(os) szerkezettel bíró :

Hosszútávon periodikusan ismétlődő térrácsos szerkezetbe rendeződött részecskék (atomok, ionok, molekulák) alkotta szilárd anyag ("periodikus anizotróp homogén diszkontinuum")

Kristálytani elemi cella (konvencionális cella):

A kristályrács olyan <u>legkisebb</u> építőeleme ("téglája", "paralellepipedonja"), - amelyet a tér megfelelő (három nem egysíkba eső eltolásvektor alkotta bázis által kijelölhető) irányaiba <u>eltolva, hézag,</u> ill. <u>átfedés nélkül</u> megkaphatjuk/kirakhatjuk képzeletben a <u>teljes</u> térbeli kristályt, ill. végtelen kristályrácsot,

- és amely még tartalmazza/mutatja az adott kristályrács <u>összes jellemző külső</u> (mikroszkóppal észlelhető, középpontos, tükör-, több fogású forgástengely-, inverziós tengely-) <u>és belső (</u>szisztematikus kioltást okozó, szubmikroszkópikus csúszósík-, csavartengely-) szimmetriáját, (azaz aktuális típusának/tércsoportjának minden szimmetriaelemét, azaz azonosan elhelyezkedő szimmetriakészletét).

- Csoportosításuk: 7 kristályrendszerbe, 32 szimmetriaosztályba, 230 tércsoportba)

A kristálytani elemi cella 6 paramétere:

• élhosszai **a**, **b** és c, valamint szögei: α , β és γ az ún. rácsparaméterek.

A kristályszerkezetet, az elemi cellák paramétereit, benne a részecskék elhelyezkedését és szimmetriáját a részecskék térkitöltése, polarizálhatósága, töltései és a fellépő első és másodrendű kötőerők természete, nagysága és azok egyensúlya határozza meg.

Kristály- rendszer	Primitív (P) α, β, γ ≠ 90°	Tércentrált (I)	Minden lapon centrált (F)	Alaplapon centrált (A,B,C)
Háromhajlású / (triclinic)	$\beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ}$			$\beta \neq 90^{\circ}$ $\alpha, \gamma = 90^{\circ}$
Egyhajlású (monoclinic)	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$	$a \neq b \neq c$
Rombos (orthorhombic)	$a \neq c$	$a \neq c$ $a \neq c$		
Négyzetes (tetragonal)			ь	D
Köbös (cubic), szabályos	$a^{a} = \beta = \gamma \neq 90^{\circ}$	a a		
Romboéderes (rhombohedral trigonal	a a a a	ι.	u	
Hatszöges (hexagonal)				

Szimmetriaelemek	Térbeli geometriai transzformáció	Szimmetria- elem jele	Rajz- jele	Egyéb tudnivalók
Szimmetria-középpont, szimmetriacentrum, inverziós középpont	Középpontra való tükrözés	i, -1	•	
Tükörsík, szimmetriasík	Síkra való tükrözés	m		<i>m</i> ≡ -2
<i>n</i> -fogású forgástengely, sz.tengely, gír	Forgatás tengely körül <i>360/n = 180, 120, 90, ill.</i> <i>60°</i> fokkal	2, 3, 4, 6		
<i>n</i> -fogású inverziós tengely/ <i>n</i> -fogású inverziós giroidok	Tengely körüli forgatás és (egy a tengelyre eső középpontra, avagy egy rámerőleges síkra való) tükrözés műveleti eredője	-3≡S ₆ , -4≡S ₄ ,	•	$-6\equiv S_3=$ =3+m=3/m
Csúszósíkok	Síkra való tükrözés és félegységnyi , síkkal párhuzamos eltolás műveleti eredője	a, b,c, n, d,		
Csavartengelyek	Forgatás tengely körül és párhuzamos eltolás műveleti eredője	$\begin{array}{c} 2_{1}, \ 3_{1}, 3_{2}, \\ 4_{1}, 4_{2}, 4_{3}, \\ 6_{1}, 6_{2}, 6_{3}, \ 6_{4}, 6_{5} \end{array}$		n _z :eltolás z/n- egységgel

A kristályszerkezet leírása kristálytani koordinátarendszerben

A kristálytani elemi cella 6 paramétere: élhosszai **a**, **b** és c, valamint szögei: α , β és γ az ún. rácsparaméterek.

A kristálytani koordinátarendszer tengelyei párhuzamosak az elemi cella éleivel, a kristálytani koordinátatengelyek által bezárt szögek azonosak az elemi celláival, a koordinátatengelyek egységei éppen az elemi cella élhosszai. A tengelyek egymáshoz viszonyított szögei, élhosszai, minimális, ill. maximális szimmetriáik alapján 7 kristályrendszerbe sorolhatóak a kristályszerkezetek.

<u>Atom(mag)koordináták</u>: kristálytani pontkoordináták : P(x,y,z).

<u>Kristályrácssík-sereg</u>: önmagukkal párhuzamos, szomszédjaiktól azonos távolságra elhelyezkedő rácssíkok, amelyek mindegyikén azonos módon (síkonként 2D-rácsot alkotva) periodikus rendben helyezkednek el/ülnek részecskék.

<u>Rácssíkseregek térállásának</u> megkülönböztetésére/azonosítására a síkseregre merőleges (ún. normál v. síknormális) vektor szolgálhat: S (h k l) = $\underline{n}(h, k, l)!$ (abs[\underline{n}]=1/d, reciprokrács-vektor is egyben) Síksereg-azonosító indexhármas: <u>Miller-indexek vagy (hkl)-indexek (</u>melyek az origóhoz legközelebb eső, de azon át nem menő síkjuk tengelymetszeteiből is származtathatóak).

<u>A röntgensugárzás kölcsönhatása kristályos anyaggal:</u> <u>Röntgensugarak diffrakciója kristályrácssík-seregeken</u>

Diffrakció (hullámok elhajlása és interferenciája rés(ek)en) alapfeltétele: λ_{rtg} ≈ d_{rács}

A periodikusan ismétlődő, hosszú távú rendet mutató kristályrácson elhajlás, eltérülés csak kitűntetett (ún. reflexiós) irányokban jelentkezik, akkor és csakis akkor, amikor maximális interferenciális erősítés valósul meg, míg egyéb irányokban semmi sem, azaz teljes kioltás tapasztalható. Az elhajlás geometriai feltételét a maximális erősítés megvalósulása adja meg: az interferáló hullámok útkülönbsége (1s) egyezzen meg azok hullámhosszának egészszámú többszörösével: (Bragg-egyenlet)

$\Delta s = (n) \lambda = 2 d \sin \theta$

- λ, a diffraktálódó röntgensugarak hullámhossza (Å),
- n = 1, 2, 3, ..., kis egész szám (ált. n=1-nek tekintjük), a diffrakciós rend
- *d*, az elhajlást okozó síksereg jellegzetes rácssíktávolsága (Å),
- $-\theta$ a diffraktáló sík és a röntgensugár szöge, a beesési szög pótszöge

Atomi hozzájárulások a diffraktált sugarak elhajló

- Azok az atomok, amelyek pontosan egy-egy adott rácssíkon fekszenek maximálisan hozzájárulnak a diffraktált sugárzás intenzitásához.
- Azok az atomok, amelyek pontosan félúton vannak a párhuzamos rácssíkok között maximális csökkentő hatást fejtenek ki az interferenciára,
- Azok pedig, amelyek valamely köztes pozícióban foglalnak helyett konstruktívan vagy destruktívan járulnak hozzá az interferenciához a pontos elhelyezkedésüktől függően, de mindenképpen kisebb mértékben, mint amekkora a maximális hatásuk.
- Továbbá, az egyes atomok röntgensugár-szóróképessége (elemi szórási tényezője) azzal arányos, hogy hány elektront tartalmaznak.

Atomok röntgenfotonszórási tényezői: fz

- Röntgenfotonok szóródása az atomok elektronfelhőjén
 - az atomok elemi röntgenszórási tényezője fz
 - f_z ~ Z (pontosabban az aktuális elektronszámmal)

Röntgendiffrakció egykristályokon

- Egykristályokon, λ = állandó, ismert hullámhosszúságú monokromatikus sugárzással
 - Adott kristályra jellemző <u>szubmikroszkópikus rácssíktávolságok d</u> meghatározhatók az egyes 20, k mérésén keresztül:

$$\Delta s = (n)\lambda = 2d_i \,\sin\theta_i$$

$$d_i = \frac{(n)\lambda}{2\sin\theta_i}$$

- Az összes lehetséges <u>eltérülési irányt</u>, ill. az abban az irányban mérhető <u>eltérülési intenzitást</u> kimérve, matematikai módszerekkel igen pontosan <u>visszakövetkeztethetünk</u> a kristály <u>kristálytani elemi cellájára</u>, sőt szerencsés esetben az abban jelenlévő atomok minőségére és geometriai elhelyezkedésére → rács-, ill. molekulaszerkezet (atomtávolságok, kötésszögek megadásával történő) megoldása = <u>egykristály-röntgendiffrakciós szerkezetmeghatározás</u>
 - Az eltérülési irányok csak a kristálytani elemi cella méreteitől (a, b, c, α, β, γ) és a kristály külső és belső szimmetriáitól (tércsoportjától) függnek;
 - míg az adott eltérülési irányban észlelhető röntgensugár-intenzitás a jelenlevő atomok minőségétől (f_i ~ Z_e) és a rácssíkok közötti helyétől (x,y,z koordinátáktól cos ψ + i sin ψ fg. szerint, ahol ψ=2π[hx+ky+lz]) függ;

Röntgensugarak diffrakciója egykristályokon

Az összes atom eredő komplex hozzájárulása adott (*hkl*)-síksereg által eltérített intenzitáshoz: szerkezeti tényező (,struktur-faktor'): F(*hkl*)

Egykristályszerkezetmeghatározások

TiO₂ módosulatok

Rutil

Anatáz

Gyémánt és grafit

Atom(ion)koordináták lerakata/gyűjteménye: ICSD (Inorganic Crystal Structural Database, FIZ)

Egykristályszerkezet-meghatározások (molekularácsokban) pl. Dorothy Crowfoot Hodgkin, kémiai Nobel díjas 1964

Hexametiléntetramin (CH₂)₆N₄

Penicillin (K-sóként, 1946)

B₁₂-vitamin(1956), Inzulin (1969)

Koleszterin (jodid, 1937)

Atomkoordináták:CSD(Cambridge Structural Database,CCDC) +PDB Protein Database (e-sűrűség)

Röntgensugarak diffrakciója kristályporon

Első marsi pordiffraktogram (Curiosity-2012): (bazalt)por: földpát, piroxén, olivin kristályos ásványokkal + amorf (röntgenfluoreszcenciás szórt sugárzást is hozzámérve)

Röntgensugarak diffrakciója kristályporon

Röntgensugarak diffrakciója kristályporon

Por-röntgendiffrakció (XRD), diffrakciós kép

A diffraktált sugárak intenzitása (cps)

Röntgendiffrakció kristályok finom porán

- Diffrakció véletlenszerűen rendezetlen orientációban elhelyezkedő <u>kristályporon, ill., polikristályos</u> anyagokon adott ($\lambda =$ <u>állandó, ismert</u>) hullámhosszúságú (monokromatikus) sugárnyalábbal:
 - A kristálytanilag azonos síkseregek reflexiói sugárkúpokba rendeződnek, amelyek félkúpszögei éppen 2*θ* nagyságúak lesznek, segítségükkel az egyes d_i jellemző rácstávolságok meghatározhatók az egyes 2*θ* -k mérésén keresztül (n=1, feltételezésével):

$$\Delta s = (n)\lambda = 2d_i \,\sin\theta_i$$

$$d_i = \frac{(n)\lambda}{2\sin\theta_i}$$

- Por-röntgendiffrakciós kép: <u>d_i (20_i) I_{rel} (= 100 I_i/I_{100%}) adatpár-sorozat</u>
 - A "pordiffrakciós kép" (szerkezeti leképezés) minden kristályos fázisra egyedileg jellemző (bár hasonló szerkezeteknél elég hasonlók is lehetnek)
 - Az egyes kristályos anyagok (vegyületek, elemek) szerkezeti minőségük szerint azonosíthatók (<u>kristályos fázisok</u>, pl. polimorf módosulatok, eltérő oxidációs fokú oxidok, eltérő savanyúságú sók, vesekövek azonosítása);
 - Még kristályaik keverékében is megtartják önálló diffrakciós képüket → <u>röntgendiffrakciós fázisanalízis (XRD)</u>, azonosítás szilárd keverékeikben;

F	<u>Por-röntgendiffrakciós referenciakártya, -file,</u>										
<u>pl. 00-005-628, NaCl, halit (kősó)</u>											
$d_{i,hkl} =$		_	$(n)\lambda$		(8)		I ^{i,hk}	$l = 10^{10}$	$\int \frac{I_{i,k}}{I_{i,k}}$	ıkl	(%)
		$2\sin \theta_{i,hkl}$		(A) —		rel	- 10	I_{max}		(70)	
d	2.82	1.99	1.63	3.258	NaCl						*
I/I,	100	55	15	13	SODIUM CHL	ORIDE		HALITE			
Rad.	<u>Γ</u> λ	1.5405	Filter.	Dia.	<u> </u>	٨b	I/I ₁	hkl	٨b	I/I_1	hkl
Cut off I/I ₁ Ref. Swanson and Fuyat, NBS Circular 539, Vol. 11, 41 (1953)				3.258 2.821 1.994	13 100 55	111 200 220					
Sys.	Sys. Cubic S.G. $O_H^5 - Fm3m$ a 5.6402 b c C				1.701 1.628	2 15	311 222				
a Ref.	ß Ibid.	}_	γ	Z 4	Dx 2.164	1.410 1.294	6	400 331			
	1.261 11 420 1.1515 7 422										
ξα 2V	D	nωβ 1.	542 Eγ mp	Color	Sign	1.0855 0.9969	1 2	511 440			
Ref.	lbid.					.9533	13	531 600			
An A	An ACS reagent grade sample recrystallized twice from			.8917	4	620 533					
hydrod X-ra	hydrochloric acid. X-ray pattern at 26°C.			.8503 .8141	3 2	622 444					
	,										
Rep	Replaces 1-0993, 1-0994, 2-0818										

Nemzetközi por-röntgendiffrakciós referencia-

-adatbázis(ok): Powder Diffraction File (PDF)

- <u>A gondozó régi és új szervezet(ek) elnevezései</u>
 - ASTM (American Society for Testing and Materials),
 - JCPDS (Joint Commettee for Powder Diffraction Standards),
 - ICDD (00, International Centre for Diffraction Data, PDF-2, PDF-5+).
- Az adatkártyák minősítési jelei (PDF-2/PDF-4+(Minerals)/PDF-5+)
 - * (S) kiválóan megbízható adatokat tartalmaz ,
 - i (I) Miller-(hkl)-indexeléssel ellátott adatsor,
 - (B) hkl-indexelés nélküli adatsor,
 - o (O) gyenge megbízhatóságú adatsor (pl. keverékből),
 - (D) időközben meghaladt, törlésre szánt adatsorok,
 - c (C) egykristályadatokból számított, ún. kalkulált porfelvétel,
 - (H) feltételezett, hipotetikus szerkezetre számított adatok.
- Egykristály diffrakciós adatbázisokból elérhető szimulált porfelvételek:
 - ICSD (01, Inorganic Crystal Structure Database, FIZ+NIST, PDF-2/4+)
 - CSD (02, Cambridge Structural Database, CCDC, szerves, elemorganikus, ill. koordinációs komplex (fém-komplex) vegyületek, PDF-4/Organics)
- Adatkártyák más adatgyűjtőktől
 - NIST (03, National Institute for Standards and Testing, PDF-2, PDF-4+)
 - LPF (04, MPDS, Linus Pauling File, PDF-4+)
 - ICDD (05, újabban egykristály-koordináták, saját gyűjtéssel is)

A nemzetközi pordiffrakciós adatbázis (PDF) diffrakciós referenciamintázatainak száma,

forrásai és összeállításai szerint (2023.szept.)

Eredeti adatforrás/ adatbázis (* -2014)	PDF-2 Release 2024	PDF-5+ 2024 WebPDF-5+ 2024	PDF-4/ Minerals 2024	PDF-4 /Organics 2021
00-ICDD *	111.864	111.864	11.747	37.753
01-FIZ (ICSD) *	152.103	61.376	10.929	10.991
02-CCDC (CSD) *	0	0	0	431.359
03-NIST *	10.067	3.018	207	281
04-MPDS (LPF) *	0	177.597	18.518	0
05-ICDD Crystal Data *	409	409	22	14.582
Összes mintázat	349.700	1.061.800	51.900	547.200
Szervetlen/szerves		442.600/623.000		9,100 (Brand)
Adatok atomi koordinátákkal	0	586,700	42.700	126,900*
RIR (Reference Intensity Ratio)	244,500	956,600	40.100	463.710*
Kísérleti felvétel *	0	9.029	106	4.869
Számított felvétel *	0	354.264	29.456	494.966

Powder Diffraction File (PDF) adatbázis:

fázisazonosítások, fáziselemzések

- <u>Az adatbázis megjelenési formái (katalógus kártyák, könyvek, CD-ROM, relációs adatbázis PDF-2, PDF-4+, PDF-4/Minerals, PDF-4/Organics)</u>
 - ICDD (International Centre for Diffraction Data), kb. 7000 USD.
 - BME-OMIKK 1993-ig kartoték + könyvek; CD-n, DVD-n, USB-n az újabb beszerzésű diffraktométerekhez (PDF-5+ Release 2024, Szervetlen és Analitikai Kémia Tanszéken)
 - Indexek (Alphabetical Index, DDview-programok), Kereső könyvek (Hanawalt Search Index, Sleve-programok)
 - Inorganic Phases
 - Organic and Metall-organic Phases
- <u>A kísérleti fázisok azonosítása (referencia mintázattal: adatbázis-forráskód, set-, és kártyaszám megadása)</u>
 - Előismeretek szükségesek a kiindulási anyagokról, a vegyületekben várhatóan előforduló elemekről,
 - A mért nagyintenzitású csúcsok, de lehetőleg a referencia kártyán szereplő összes jelentős intenzitással bíró rácstávolságok (Å) a mérési hibákon belül egyezést mutassanak a kísérleti értékekkel
 - Számítógépes kereső-összehasonlító (Search Match) algoritmusok segítségével generált valószínűségi lista kritikus értékelésével.
 - Pordiffrakciós referenciakártya hiányában az egykristály diffrakciós adatbázisokból elérhető szimulált porfelvételek segítségül hívásával.
 - Rietveld-analízis (szerkezetfinomítás porfelvételből, fázisarányok illesztése az intenzitás arányokra), DA-SH-szerkezeti algoritmus

Az új diasztereomer sók, ill. ko-kristályok por-röntgendiffrakciós mintázatának indexelése, kristálytani tércsoportba sorolása, és az új rácsvegyület kristályszerkezeti elrendeződésének és molekulakonformációinak keresése

Egyéb, röntgendiffrakcióval nyerhető információk

- Amorf, rendezetlen, üveges anyagoknak nincs specifikus éles csúcsos diffrakciós képe. Pl. generikus gyógyszerek "amorf" módosulatai.
- Kiszélesedett csúcshalmok, pl. mikrokristályos anyagok (pl. cellulóz, keményítő), részlegesen (szemi)kristályos polimerek (pl. szindiotaktikus polipropilének) körében.
- A kristályosság (krisztallitméret) növekedésével csökken a diffrakciós csúcsok félértékszélessége, nő a csúcsmagassága (Debye-Scherrer formula).
- Jellegzetes ismétlődő távolságok, ill. azok eloszlása, pl. rétegszilikátok és duzzadóképességük; nano-, ill. mezopórusos anyagok jellemző méretei kis szögű röntgenszórás alapján.
- Mennyiségi elemzések, általában 5% felett, kalibrációs mintasorozattal, RIR-értékek alapján (Reference Intensity Ratio, Al₂O₃-ra vonatkoztatva), Rietveld-féle teljes diffrakciós képanalízissel
- Módosulat(fázis)változások magashőmérsékleten, opközelében, kristályvízvesztés, ill. -újrafelvétel különböző páratartalmú terekben

Miniatűrizált, hordozható, kombinált XRD-XRF berendezés

Szilárd (por-) mintavétel a Marson

